Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)The C+ score for US bridges on the 2017 infrastructure report card underscores the need for improved data-driven methods to understand bridge performance. There is a lot of interest and prior work in using inspection records to determine bridge health scores. However, aggregating, cleaning, and analyzing bridge inspection records from all states and all past years is a challenging task, limiting the access and reproducibility of findings. This research introduces a new score computed using inspection records from the National Bridge Inventory (NBI) data set. Differences between the time series of condition ratings for a bridge and a time series of average national condition ratings by age are used to develop a health score for that bridge. This baseline difference score complements NBI condition ratings in further understanding a bridge’s performance over time. Moreover, the role of bridge attributes and environmental factors can be analyzed using the score. Such analysis shows that bridge material type has the highest association with the baseline difference score, followed by snowfall and maintenance. This research also makes a methodological contribution by outlining a data-driven approach to repeatable and scalable analysis of the NBI data set.more » « less
-
null (Ed.)We present a novel technique for transcribing crowds in video scenes that allows extracting the positions of moving objects in video frames. The technique can be used as a more precise alternative to image processing methods, such as background-removal or automated pedestrian detection based on feature extraction and classification. By manually projecting pedestrian actors on a two-dimensional plane and translating screen coordinates to absolute real-world positions using the cross ratio, we provide highly accurate and complete results at the cost of increased processing time. We are able to completely avoid most errors found in other automated annotation techniques, resulting from sources such as noise, occlusion, shadows, view angle or the density of pedestrians. It is further possible to process scenes that are difficult or impossible to transcribe by automated image processing methods, such as low-contrast or low-light environments. We validate our model by comparing it to the results of both background-removal and feature extraction and classification in a variety of scenes.more » « less
-
In order to simulate virtual agents in the replica of a real facility across a long time span, a crowd simulation engine needs a list of agent arrival and destination locations and times that reflect those seen in the actual facility. Working together with a major metropolitan transportation authority, we propose a specification that can be used to procedurally generate this information. This specification is both uniquely compact and expressive—compact enough to mirror the mental model of building managers and expressive enough to handle the wide variety of crowds seen in real urban environments. We also propose a procedural algorithm for generating tens of thousands of high-level agent paths from this specification. This algorithm allows our specification to be used with traditional crowd simulation obstacle avoidance algorithms while still maintaining the realism required for the complex, real-world simulations of a transit facility. Our evaluation with industry professionals shows that our approach is intuitive and provides controls at the right level of detail to be used in large facilities (200,000+ people/day).more » « less
-
The American Society of Civil Engineers (ASCE) Report Card for America’s Infrastructure gave bridges a C+ (mediocre) grade in 2017. Approximately, 1 in 5 rural bridges are in critical condition, which presents serious challenges to public safety and economic growth. Fortunately, during a series of workshops on this topic organized by the authors, it has become clear that Big Data could provide a timely solution to these critical problems. In this work in progress paper, we describe a conceptual framework for developing SMart big data pipelines for Aging Rural bridge Transportation Infrastructure (SMARTI). Our framework and associated research questions are organized around four ingredients: • Next-Generation Health Monitoring: Sensors; Unmanned Aerial Vehicle/System (UAV/UAS); wireless networks • Data Management: Data security and quality; intellectual property; standards and shared best practices; curation • Decision Support Systems: Analysis and modeling; data analytics; decision making; visualization, • Socio-Technological Impact: Policy; societal, economic and environmental impact; disaster and crisis management.more » « less
An official website of the United States government

Full Text Available